

"McBride, David" <Dave.McBride@DOH. WA.GOV>

01/10/2005 12:33 PM

To: Sally Thomas/R10/USEPA/US@EPA, "Roland, John L."

<JROL461@ECY.WA.GOV>, Don_Steffeck@r1.fws.gov,
connolly@spokanetribe.com, kwirkus@pn.usbr.gov,
gary.passmore@colvilletribes.com, Debbie_Bird@nps.gov,
dc_wa@usgs.gov, kevin_devitt@or.blm.gov, Kevin
Rochlin/R10/USEPA/US@EPA, Monica Tonel/R10/USEPA/US@EPA,
Marc Stifelman/R10/USEPA/US@EPA, Bruce
Duncan/R10/USEPA/US@EPA, (b)(6)
jstefano@ch2m.com, patti.stone@colvilletribes.com, "O'Garro,
Lenford" <Lenford.O'Garro@DOH.WA.GOV>, "Carr, Liz"
<Liz.Carr@DOH.WA.GOV>, pwmoran@usgs.govJulie_Campbell,
SLUND@pn.usbr.gov, sheri.sears@colvilletribes.com,
david_woodson@usgs.gov, alec_maule@usgs.gov,
crossley@spokanetribe.com

CC

Subject: DOH's comments on fish sampling

Hi all, here are DOH's comments on the proposed fish collection for Lake Roosevelt.

A few issues to discuss with regard to fish tissue sampling for Lake Roosevelt.

First issue is the selection of fish species. We feel rather strong about being able to address both the Colville and Spokane Tribal concerns on the inclusion of additional fish species. Rob Duff pointed out that the Colville Tribe was very interested in kokanee at a recent forum on the Columbia and Lake Roosevelt. Also at our previous meeting in Spokane, the Spokane Tribal representatives indicated their concern over mountain whitefish. We feel that both species be included in the list of fish to be sampled and analyzed. The list of fish species would then include: rainbow trout, largemouth—suckers, walleye, kokanee, and mountain or lake whitefish.

Second point that need to be addressed in the sampling plan is whether or not to analyze for all 209 PCB congeners in all samples. From our perspective, unless there is a specific need to conduct this analysis for ecological reasons, it is likely overkill and rather expensive. Currently, toxicity values for PCBs are based on total PCBs which are often derived from either the summing of Arochlors, homologs, or congeners. The least expensive would be to analyze for Arochlors to determine total PCBs. While we realize their may be a need for congener analysis for "fingerprinting", it is likely that only a subset of the samples for full congener analysis be needed for such an assessment. A approach similar to work Ecology and DOH conducted on the Spokane/Long Lake assessment would likely fulfill both ecological and human health data needs.

Third point is on sample size. Attached is an excel spreadsheet that we used to calculate sample size for various fish species based on work done by Jim VanDerslice. We ran some calculations for both sample size estimates based on PCBs and on mercury. Two options are given for both contaminants. Ultimately selection of a sample size would be based on which contaminant required the greatest number of samples. The first option for each contaminant is pie in the sky. The more realistic sampling size in terms of being able to collect and to pay for analysis is seen in option #2 for each contaminant. It should be pointed out that with the reduction in the number of fish, the ability to say something with any certainty diminishes.

To determine an appropriate sample size required having a mean and standard deviation for a specific fish species. In most cases we had to estimate both of these values which further diminishes the strength of the sample estimates, but you go with what you've got. Given the means, we estimated the meal limits. We then said ok, given these meal limits, how many samples

do we need to ensure that we don't have to change our recommendations to the next lower meal limit (EPA guidelines recommend establishing meal limits of 0, 1, 2, 4, 8, & 16 meals per month). We then calculated the fish tissue concentration that would put us at the next lower meal limit. Our sample size is then based on being able to determine with a power of 0.9, and a significance of 0.1 the sample size required to differentiate between the two concentrations (and therefore meal limits).

The second option differs from the first in that instead of dropping to the next meal limit category (e.g. from 16 meals per month to 8 meals per month) we went to jumping two meal limit categories (i.e. from 16 to 4). Given the greater difference in meal limits (and therefore fish tissue concentrations) the sample size required to detect such a difference given the same power and significance levels is lower. It should be pointed out that for both PCBs and mercury, option 2 resulted in the same number of samples (550 total samples).

In short, DOH would recommend that the number of faish species sampled be increased from 3 to 5. PCB analysis for congeners should be limited to a subset of the samples with the majority being analyzed for Arochlors to determine total PCBs, and that the sample size be based on the ability to 3 differentiate between allowable meal limits as discussed above.

Dave

Lake Roosevelt sample size calculations for discuss

updated 1/6/05 based on limited data on total PCB levels in selected fish species

	,	PCBs		8 oz meals/month	Recom.	sampling	
Species	Size	Mean	Std dev	Mean	ML	objective	
Rainbow Trout*	All	40	22	4.0	4 .	mean >=	3
Walleye*	All	90	45	1.8	2	mean >=	1.5
Largemouth Sucker**	All	112.4	40	1.4	1	mean >=	0.5
Mt. Whitefish*	All	60	30	2.7	2	mean >=	1.5
Kokanee*	All	54.6	25	2.9	2	mean >=	1.5

Parameters
CV of replicates

Significance

Power

0.25 0.1 0.9

^{*} estimates based on 1998 data

^{**} Ecology 2002 Long Lake/Spokane River data

		Mean PCB conc. (ppb)		# of pops	analysis	var of obs		# fish
	To Show:	at stated meal freq	MDD	in lake	CV		n	per comp
	if we can stay at 4	53.5	13.5	11	0.25	484.0	1	5
	if we can stay at 2	107.0	17.0	11	0.25	2025.0	1	5
	if we can stay at 1	321.0	208.6	11	0.25	1600.0	1	5
•	if we can stay at 2	107.0	47.0	11	0.25	900.0	1	5
	if we can stay at 2	107.0	52.4	11	0.25	625.0	1	5

.

Est#		# total		MMD	MMD	
Composites	# comp	fish	MDD	ML low	ML high	total fish
8.4	9	45	13.1	2.4	4.0	495
22.0	23	115	16.6	1.3	1.8	1265
1.0	2	10	145.0	0.3	0.9	110
2.6	3	15	43.8	1.1	2.5	165
1.6	3	15	38.4	1.1	2.3	165

Total fish 2200

updated 1/6/05 based on EIM data on statewide mercury levels in selected fish species

	PCBs		8 oz meals/month	Recom.	sampling	
Size	Mean	Std dev	Mean	ML	objective	
All	40	22	4.0	4	mean <=	1.5
All	90	45	1.8	2	mean <=	0.5
All	112.4	40	1.4	1	mean <=	0.5
All	60	30	2.7	2	mean <=	0.5
All	54.6	25	2.9	2	mean <=	0.5
	All All All	Size Mean All 40 All 90 All 112.4 All 60	Size Mean Std dev All 40 22 All 90 45 All 112.4 40 All 60 30	Size Mean Std dev Mean All 40 22 4.0 All 90 45 1.8 All 112.4 40 1.4 All 60 30 2.7	Size Mean Std dev Mean ML All 40 22 4.0 4 All 90 45 1.8 2 All 112.4 40 1.4 1 All 60 30 2.7 2	Size Mean Std dev Mean ML objection All 40 22 4.0 4 mean <=

Parameters
CV of replicates
Significance
O.1
Power
0.9

^{*} estimates based on 1998 data

^{**} Ecology 2002 Long Lake/Spokane River data

	Mean PCB conc. (ppb)		# of pops		var of obs		# fish
To Show:	at stated meal freq	MDD	in lake	CV		n	per comp
if we need to go to 1	107.0	67.0	11	0.25	484.0	1	5
if we need to go to 0	321.0	231.0	11	0.25	2025.0	1	5
if we need to go to 0	321.0	208.6	11	0.25	1600.0	1	5
if we need to go to 0	. 321.0	261.0	11	0.25	900.0	1	5
if we need to go to 0	321.0	266.4	11	0.25	625.0	1	5
		·					

. . .

Est#		# total		MMD	MMD	
Composites	# comp	fish	MDD	ML low	ML high	total fish
1.7	2	10	61.1	1.0	3.5	110
0.6	2	10	131.4	0.4	8.0	110
1.0	2	10	145.0	0.3	0.9	110
0.2	2	10	87.6	0.4	0.7	110 ·
0.2	2	10	76.8	0.4	0.7	110

Total fish 550

updated 1/6/05 based on EIM data on statewide mercury levels in selected fish species

		Hg		8 oz meals/month	Recom.	sampling	
Species	Size	Mean	Std dev	Mean	.ML	objecti	ve _
rainbow trout	All	50	27	16.1	16	mean >=	12
Walleye	All	187	104	4.3	4	mean >=	3
Largemouth Sucker*	All	146	55	5.5	. 4	mean >=	3
Whitefish**	All	97	25	8.3	8	mean >=	6
Kokanee	Ali	118	36	6.8	8	mean >=	6
Parameters							
CV of replicates		0.25	5		•		
Significance	•	0.1					
Power		0.9)				

^{*} whole longnose sucker used as surogate
** lake whitefish used

				·			
To Show:	Mean Hg conc. (ppb) at stated meal freq	MDD	# of pops	analysis CV	var of obs	n	# fish per comp
if we can stay at 16	66.9	16.9	11	0.25	729.0	1	5
if we can stay at 4	267.5	80.5	11	0.25	10816.0	1	5
if we can stay at 4	267.5	121.5	11	0.25	3025.0	1	5
if we can stay at 8	133.8	36.8	11	0.25	625.0	1	5
if we can stay at 8	133.8	15.8	11	0.25	1296.0	1	5

. .

Est#		# total		MMD	MMD	
Composites	# comp	fish	MDD	ML low	ML high	total fish
8.3	9	45	16.2	1.9	3.2	495
5.8	6	, 30	79.5	0.5	0.9	330
1.9	3	15	95.8	0.4	0.9	165
5.0	5	25	36.6	0.9	1.7	275
31.2	32	· 160 ·	15.6	1.1	1.4	1760
					total fish	3025